Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A quantitative genomics map of rice provides genetic insights and guides breeding

Abstract

Extensive allelic variation in agronomically important genes serves as the basis of rice breeding. Here, we present a comprehensive map of rice quantitative trait nucleotides (QTNs) and inferred QTN effects based on eight genome-wide association study cohorts. Population genetic analyses revealed that domestication, local adaptation and heterosis are all associated with QTN allele frequency changes. A genome navigation system, RiceNavi, was developed for QTN pyramiding and breeding route optimization, and implemented in the improvement of a widely cultivated indica variety. This work presents an efficient platform that bridges ever-increasing genomic knowledge and diverse improvement needs in rice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Genotype matrix of 225 QTGs for a collection of 404 rice accessions.
Fig. 2: GWAS loci associated with important agronomic traits summarized from eight GWAS cohorts.
Fig. 3: Genomic distribution and linkage drag for QTGs in rice genome.
Fig. 4: Genetic investigation of the QTNs.
Fig. 5: Benchmarking for different backcrossing breeding designs.
Fig. 6: A schematic diagram for RiceNavi implementation and user operation.
Fig. 7: Improvement of the Huanghuazhan cultivar by implementation of RiceNavi.

Similar content being viewed by others

Data availability

The raw DNA sequencing data of the QTN library are deposited with GenBank under the bioproject accession no. PRJNA623686. A web-based version of RiceNavi is available from the website http://www.xhhuanglab.cn/tool/RiceNavi.html (supporting most browsers including Chrome, Firefox and Safari, but not Internet Explorer). In this web-based application, all functions in RiceNavi (QTNmap, QTNpick, Simulation and SampleSelect) can be accessed with user-friendly graphical interfaces.

Code availability

The source code of RiceNavi is available from both our laboratory website (http://www.xhhuanglab.cn/tool/RiceNavi.html) and the GitHub repository (https://github.com/xhhuanglab/RiceNavi). The other codes for the QTN-related analyses are also provided in the GitHub repository (https://github.com/xhhuanglab/QTN_scripts).

References

  1. Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Takeda, S. & Matsuoka, M. Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 9, 444–457 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Wallace, J. G., Rodgers-Melnick, E. & Buckler, E. S. On the road to breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet. 52, 421–444 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Hasan, M. M. et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29, 237–254 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Septiningsih, E. M. et al. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann. Bot. 103, 151–160 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Singh, S. et al. Pyramiding three bacterial blight resistance genes (xa5, xa13 and Xa21) using marker-assisted selection into indica rice cultivar PR106. Theor. Appl. Genet. 102, 1011–1015 (2001).

    Article  CAS  Google Scholar 

  7. Suh, J.-P. et al. Development of resistant gene-pyramided japonica rice for multiple biotic stresses using molecular marker-assisted selection. Plant Breed. Biotech. 3, 333–345 (2015).

    Article  Google Scholar 

  8. Chen, T. et al. Genetic improvement of japonica rice variety Wuyujing 3 for stripe disease resistance and eating quality by pyramiding Stv-bi and Wx-mq. Rice Sci. 23, 69–77 (2016).

    Article  Google Scholar 

  9. Qian, Q., Guo, L., Smith, S. M. & Li, J. Breeding high-yield superior quality hybrid super rice by rational design. Natl Sci. Rev. 3, 283–294 (2016).

    Article  Google Scholar 

  10. Zeng, D. L. et al. Rational design of high-yield and superior-quality rice. Nat. Plants 3, 17031 (2017).

    Article  PubMed  Google Scholar 

  11. Ikeda, M., Miura, K., Aya, K., Kitano, H. & Matsuoka, M. Genes offering the potential for designing yield-related traits in rice. Curr. Opin. Plant Biol. 16, 213–220 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Li, Y. et al. Rice functional genomics research: past decade and future. Mol. Plant 11, 359–380 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Knoppers, B. M., Zawati, M. H. & Senecal, K. Return of genetic testing results in the era of whole-genome sequencing. Nat. Rev. Genet. 16, 553–559 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, W. et al. Genomic variation in 3,010 diverse accessions of Asian cultivated rice. Nature 557, 43–49 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yano, K. et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl Acad. Sci. USA 116, 21262–21267 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yano, K. et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 48, 927–934 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Zhao, Q. et al. Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat. Genet. 50, 278–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Ramstein, G. P., Jensen, S. E. & Buckler, E. S. Breaking the curse of dimensionality to identify causal variants in Breeding 4. Theor. Appl. Genet. 132, 559–567 (2019).

    Article  PubMed  Google Scholar 

  20. Li, X. et al. Genic and nongenic contributions to natural variation of quantitative traits in maize. Genome Res. 22, 2436–2444 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang, X. et al. Genomic architecture of heterosis for yield traits in rice. Nature 537, 629–633 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Huang, X. et al. Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat. Genet. 44, 32–39 (2012).

    Article  Google Scholar 

  23. Buckler, E. S. et al. The genetic architecture of maize flowering time. Science 325, 714–718 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, C. et al. Wx(lv), the ancestral allele of rice Waxy gene. Mol. Plant 12, 1157–1166 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Xue, W. et al. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat. Genet. 40, 761–767 (2008).

    Article  CAS  PubMed  Google Scholar 

  26. Gao, Z.-Y. et al. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc. Natl Acad. Sci. USA 110, 14492–14497 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Qu, S. H. et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics 172, 1901–1914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhao, K. et al. Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2, 467 (2011).

    Article  PubMed  Google Scholar 

  29. Huang, X. et al. Genomic analysis of hybrid rice varieties reveals numerous superior alleles that contribute to heterosis. Nat. Commun. 6, 6258 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, W. et al. Breeding signatures of rice improvement revealed by a genomic variation map from a large germplasm collection. Proc. Natl Acad. Sci. USA 112, E5411–E5419 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, X. et al. Analysis of genetic architecture and favorable allele usage of agronomic traits in a large collection of Chinese rice accessions. Sci. China Life Sci. 63, 1688–1702 (2020).

    Article  PubMed  Google Scholar 

  32. Shomura, A. et al. Deletion in a gene associated with grain size increased yields during rice domestication. Nat. Genet. 40, 1023–1028 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Fan, C. et al. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor. Appl. Genet. 112, 1164–1171 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Wang, Z. Y. et al. The amylose content in rice endosperm is related to the post-transcriptional regulation of the waxy gene. Plant J. 7, 613–622 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Yano, M. et al. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2484 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sasaki, A. et al. A mutant gibberellin-synthesis gene in rice. Nature 416, 701–702 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Huang, X. et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet. 41, 494–497 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kojima, S. et al. Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43, 1096–1105 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, L. et al. A natural tandem array alleviates epigenetic repression of IPA1 and leads to superior yielding rice. Nat. Commun. 8, 14789 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, Y. et al. Map-based cloning and characterization of BPH29, a B3 domain-containing recessive gene conferring brown planthopper resistance in rice. J. Exp. Bot. 66, 6035–6045 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Huang, X. et al. High-throughput genotyping by whole-genome resequencing. Genome Res. 19, 1068–1076 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dong, H. et al. A novel tiller angle gene, TAC3, together with TAC1 and D2 largely determine the natural variation of tiller angle in rice cultivars. PloS Genet. 12, e1006412 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Shirasawa, K., Takeuchi, Y., Ebitani, T. & Suzuki, Y. Identification of gene for rice (Oryza sativa) seed lipoxygenase-3 involved in the generation of stale flavor and development of SNP markers for lipoxygenase-3 deficiency. Breed. Sci. 58, 169–176 (2008).

    Article  CAS  Google Scholar 

  44. Yano, K. et al. Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a qtl gene involved in another mechanism. Mol. Plant 8, 303–314 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Ma, Y. et al. COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Hu, B. et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 47, 834–838 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Liang, P. P., Saqib, H. S. A., Zhang, X. T., Zhang, L. S. & Tang, H. B. Single-Base resolution map of evolutionary constraints and annotation of conserved elements across major grass genomes. Genome Biol. Evol. 10, 473–488 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Joly-Lopez, Z. et al. An inferred fitness consequence map of the rice genome. Nat. Plants 6, 119–130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vaser, R., Adusumalli, S., Leng, S. N., Sikic, M. & Ng, P. C. SIFT missense predictions for genomes. Nat. Protoc. 11, 1–9 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Molina, J. et al. Molecular evidence for a single evolutionary origin of domesticated rice. Proc. Natl Acad. Sci. USA 108, 8351–8356 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi, J. Y. et al. The rice paradox: multiple origins but single domestication in Asian rice. Mol. Biol. Evol. 34, 969–979 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Choi, J. Y. & Purugganan, M. D. Multiple origin but single domestication led to Oryza sativa. G3 (Bethesda) 8, 797–803 (2018).

    Article  CAS  Google Scholar 

  53. Li, C. B., Zhou, A. L. & Sang, T. Rice domestication by reducing shattering. Science 311, 1936–1939 (2006).

    Article  CAS  PubMed  Google Scholar 

  54. Jin, J. et al. Genetic control of rice plant architecture under domestication. Nat. Genet. 40, 1365–1369 (2008).

    Article  CAS  PubMed  Google Scholar 

  55. Ishii, T. et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45, 462–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  56. Chen, S. et al. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20, 1850–1861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yu, B. et al. TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J. 52, 891–898 (2007).

    Article  CAS  PubMed  Google Scholar 

  58. Lin, H., Ashikari, M., Yamanouchi, U., Sasaki, T. & Yano, M. Identification and characterization of a quantitative trait locus, Hd9, controlling heading date in rice. Breed. Sci. 52, 35–41 (2002).

    Article  CAS  Google Scholar 

  59. Li, J. et al. A practical protocol to accelerate the breeding process of rice in semitropical and tropical regions. Breed. Sci. 65, 233–240 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chen, J. et al. Genome-wide association analyses reveal the genetic basis of combining ability in rice. Plant Biotechnol. J. 17, 2211–2222 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, D. et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc. Natl Acad. Sci. USA 113, E6026–E6035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, J., Li, M., Zhang, Q., Wei, X. & Huang, X. Exploring the molecular basis of heterosis for plant breeding. J. Integr. Plant Biol. 62, 287–298 (2020).

    Article  PubMed  Google Scholar 

  63. Ouyang, Y. & Zhang, Q. The molecular and evolutionary basis of reproductive isolation in plants. J. Genet. Genomics 45, 613–620 (2018).

    Article  PubMed  Google Scholar 

  64. Wang, C. S. et al. Dissecting a heterotic gene through Gradedpool-Seq mapping informs a rice-improvement strategy. Nat. Commun. 10, 2982 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Xie, Y., Shen, R., Chen, L. & Liu, Y. G. Molecular mechanisms of hybrid sterility in rice. Sci. China Life Sci. 62, 737–743 (2019).

    Article  PubMed  Google Scholar 

  66. Wei, X. et al. Domestication and geographic origin of Oryza sativa in China: insights from multilocus analysis of nucleotide variation of O. sativa and O. rufipogon. Mol. Ecol. 21, 5073–5087 (2012).

    Article  CAS  PubMed  Google Scholar 

  67. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li, H. et al. The sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  69. McKenna, A. et al. The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Browning, S. R. & Browning, B. L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81, 1084–1097 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Raj, A., Stephens, M. & Pritchard, J. K. fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197, 573–589 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Chen, X. Y. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, D. R. et al. An imputation platform to enhance integration of rice genetic resources. Nat. Commun. 9, 3519 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wilkins, O. et al. EGRINs (environmental gene regulatory influence networks) in rice that function in the response to water deficit, high temperature, and agricultural environments. Plant Cell 28, 2365–2384 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reynoso, M. A. et al. Evolutionary flexibility in flooding response circuitry in angiosperms. Science 365, 1291–1295 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao, L. et al. Integrative analysis of reference epigenomes in 20 rice varieties. Nat. Commun. 11, 2658 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang, Y. et al. Model-based analysis of ChIP–Seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhao, Q., Huang, X. H., Lin, Z. X. & Han, B. SEG-Map: a novel software for genotype calling and genetic map construction from next-generation sequencing. Rice 3, 98–102 (2010).

    Article  Google Scholar 

  83. Voorrips, R. E. & Maliepaard, C. A. The simulation of meiosis in diploid and tetraploid organisms using various genetic models. BMC Bioinform. 13, 248 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the China National Rice Research Institute, Institute of Crop Sciences of Chinese Academy of Agricultural Sciences, Institute of Plant Protection of Chinese Academy of Agricultural Sciences, Chinese Academy of Sciences Center for Excellence of Molecular Plant Sciences and Huazhong Agricultural University for providing valuable rice varieties (see Supplementary Dataset 2 for details). We thank P. Xu and J. Murray for their advice and assistance in the paper writing. This work was funded by the National Natural Science Foundation of China (grant nos. 91935301 and 31825015), Innovation Program of Shanghai Municipal Education Commission (grant no. 2017-01-07-00-02-E00039) and Program of Shanghai Academic Research Leader (grant no. 18XD1402900) to X.H. and the US National Science Foundation (Plant Genome Research Program, IOS-1947609) to K.M.O.

Author information

Authors and Affiliations

Authors

Contributions

X.H. designed these studies and contributed to the original concept of the project. X.W., K.Y., J.F., Q.Z. and H.H. contributed to the collection, planting and phenotyping of the QTN library. Q.W. and J.L. performed the genome sequencing of the QTN library and breeding populations. J.Q., X.W. and X.H. performed QTN analysis, developed the RiceNavi system and implemented RiceNavi in practical breeding. X.H., J.Q., X.W., K.M.O. and B.H. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Xuehui Huang.

Ethics declarations

Competing interests

A patent on the QTN-based breeding selection method has been filed by Shanghai Normal University with X.H., X.W. and J.Q. as inventors. The remaining authors declare no competing interests.

Additional information

Peer review information Nature Genetics thanks Makoto Matsuoka and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The pipeline for 348 QTN site discovery and population genotyping.

The procedure includes determination of QTNs according to research papers and QTN genotyping from whole-genome sequence data of rice accessions.

Extended Data Fig. 2 Genotype matrix of 225 QTGs for QTN library colored by effect direction.

The figure is another display mode of Fig. 1a (colored by effect direction, rather than alternative/reference in Fig. 1a). Here, dark green, dark blue and light green, yellow and gray boxes represent the genotype for the reduced allele, increased allele, heterozygous, NA and deletion, respectively.

Extended Data Fig. 3 The matrix of QTN of different types for a collection of 404 rice accessions.

a, QTGs with multiple (≥3) QTNs. QTNs related to heading date, biotic stress and abiotic stress are highlighted with blue, purple and pink bars, respectively. b, Rare allele QTNs. QTNs with low percentage of samples (≤2%) with alternative or heterozygous alleles are illustrated. c, QTNs differentiated between japonica (including tropical and temperate japonica) and indica. QTNs with allele frequency differentiated (AF > 0.4) between japonica and indica are shown. Light blue, dark blue and light green, yellow and gray boxes represent the genotype for the reference (MSUv7.0), alternative, heterozygous, multiple alleles and deletion, respectively.

Extended Data Fig. 4 The matrix of QTN for 3023 rice accessions.

Light blue, dark blue and light green, yellow and gray boxes represent the genotype for the reference (MSUv7.0), alternative, heterozygous, and deletion, respectively.

Extended Data Fig. 5 Estimated phenotypic effects for QTGs controlling four agronomic traits.

a, Geographical locations for 9 different environments in China. Longitude (° E) and latitude (° N) of the locations are shown. b–d, The estimated phenotypic effects of homozygous alternative alleles relative to homozygous Nipponbare are jointly shown for each QTG. The phenotypes displayed include heading date (b), plant height (c), grain length (d) and grain width (e). Colors represent different environments. The bars indicate standard errors estimated by GCTA package. The QTG effects from CNmix population in Beijing and from NE population in Lingshui are not showed. For QTNs in Lingshui, the QTNs with the peak p-value are selected.

Extended Data Fig. 6 Genomic distribution of linkage drag in the rice genome for QTN library.

The candidate linkage drag (superior and inferior alleles located physically less than 2 Mb in distance) are labeled across the rice genome. The blue dots indicate the percentage of drag for the 404 QTN library accessions.

Extended Data Fig. 7 Genomic characteristics for the QTNs in the UTR and promoter regions.

a, Percentage of upstream QTNs of different distances to translational start site (ATG). b, Upstream QTN sites which resides in the open chromatin regions identified by ATAC- and FAIRE-seq.

Extended Data Fig. 8 The QTNs involved in the domestication and improvement.

a, QTNs allele frequency change during the domestication & early variety improvement and modern variety improvement. QTNs with greatest allele changes are shown. Threshold is determined by the 4DTv sites and is indicated by dotted line. b, Groups of the domestication and improvement-related QTNs. QTNs shared by two kinds of domestication or improvement are shown. The color of the QTN names represents traits and is in line with Fig. 1a. c, Percentage of domesticated and improved QTGs in different agronomic traits. d, Number of QTGs with superior and inferior alleles.

Extended Data Fig. 9 The genotypes for the selected individuals of each generation during improvement of HHZ.

The superior alleles of three QTGs (OsSOC1, Badh2 and TAC1) are targeted during the breeding process for improvement of HHZ. The locations of the three QTGs are indicated by the red arrows. From BC1F1 to BC3F1, the numbers of selected individuals are 138, 10 and 3, respectively. The genotypes for the HHZ background, donor Basmati, and heterozygous are color coded as dark green, red, and yellow respectively.

Extended Data Fig. 10 An examination for the extent to which introgressed segments from donor parents could match expected phenotypes.

a, The genotypes of the 217 BC3F1 CSSLs that constructed by HHZ and Basmati. The genotypes for the HHZ background, donor Basmati, and heterozygous are color coded as dark green, red, and yellow respectively. Positon of the introduced QTNs is shown on the top. Number of QTNs that introduced into HHZ is shown on the right. bd, Genotypes of three individuals of the CSSLs. QTNs are indicated by solid circles. The color represents the group of agronomic traits and is line with Fig. 1a. The change direction of the phenotype value is indicated by arrows. Red and blow arrows indicate increase and decrease of the traits, respectively.

Supplementary information

Supplementary Information

Supplementary Note, Fig. 1 and Tables 1–4

Reporting Summary

Peer Review Information

Supplementary Data

Supplementary Datasets 1–9

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Qiu, J., Yong, K. et al. A quantitative genomics map of rice provides genetic insights and guides breeding. Nat Genet 53, 243–253 (2021). https://doi.org/10.1038/s41588-020-00769-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-020-00769-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing